Restricted jump interpolation in the d.c.e. degrees

نویسندگان

  • Carl G. Jockusch
  • Angsheng Li
چکیده

It is shown that for any 2-computably enumerable Turing degree l, any computably enumerable degree a, and any Turing degree s, if l′ = 0′, l < a, s ≥ 0′, and s is c.e. in a, then there is a 2-computably enumerable degree x with the following properties: (1) l < x < a, and (2) x′ = s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Non-isolating Degrees Are Upwards Dense in the Computably Enumerable Degrees

The existence of isolated degrees was proved by Cooper and Yi in 1995 in [6], where a d.c.e. degree d is isolated by a c.e. degree a if a < d is the greatest c.e. degree below d. A computably enumerable degree c is non-isolating if no d.c.e. degree above c is isolated by c. Obviously, 0 is a non-isolating degree. Cooper and Yi asked in [6] whether there is a nonzero non-isolating degree. Arslan...

متن کامل

The nonisolating degrees are nowhere dense in the computably enumerable degrees

The d.c.e. degrees were first studied by Cooper [5] and Lachlan who showed that there is a proper d.c.e degree, a d.c.e. degree containing no c.e. sets, and that every nonzero d.c.e. degree bounds a nonzero c.e. degree, respectively. The main motivation of research on the d.c.e. degrees is to study the differences between the structures of d.c.e. degrees and Δ2 degrees, and between the structur...

متن کامل

Nondensity of Double Bubbles in the D.C.E. Degrees

In this paper, we show that the so-called “double bubbles” are not downward dense in the d.c.e. degrees. Here, a pair of d.c.e. degrees d1 > d2 > 0 forms a double bubble if all d.c.e. degrees below d1 are comparable with d2.

متن کامل

Turing Definability in the Ershov Hierarchy

We obtain the first nontrivial d.c.e. Turing approximation to the class of computably enumerable (c.e.) degrees. This depends on the following extension of the splitting theorem for the d.c.e. degrees: For any d.c.e. degree a, any c.e. degree b, if b < a, then there are d.c.e. degrees x0,x1 such that b < x0,x1 < a and a = x0 ∨ x1. The construction is unusual in that it is incompatible with uppe...

متن کامل

There Are No Maximal Low D.C.E. Degrees

We prove that there is no maximal low d.c.e degree.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical Structures in Computer Science

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006